sábado, 22 de agosto de 2015

GRAFENO: EL MATERIAL DEL FUTURO

¿Qué es el grafeno?

Grafeno
El carbono es uno de los elementos químicos más importantes en la naturaleza. Se encuentra en todos los seres vivos y, según se distribuyan sus átomos, puede formar sustancias con distintas características.  A partir del carbono se consigue el grafeno. Este material surge cuando pequeñísimas partículas de carbono se agrupan de forma muy densa en láminas de dos dimensiones muy finas (tienen el tamaño de un átomo), y en celdas hexagonales. Para que te hagas una idea, su estructura es similar a la que resulta de dibujar un panal de abejas en un folio. ¿Por qué en un folio? Porque es una superficie plana, de dos dimensiones, como el grafeno.

El grafeno se obtiene a partir de una sustancia abundante en la naturaleza, el grafito. Ésta, forma parte de nuestra vida cotidiana, ya que se emplea para fabricar muy variados objetos, desde la mina de los lápices hasta algunos ladrillos.
Pese a que el grafeno se conoce desde la década de 1930, fue abandonado por considerarlo demasiado inestable. No fue hasta muchos años después, en 2004, cuando los científicos de origen ruso Novoselov y Geim consiguieron aislarlo a temperatura ambiente. Este descubrimiento no fue baladí, pues gracias a él obtuvieron el Premio Nobel en 2010.

¿Qué utilidad tiene el grafeno?
Aplicación del grafeno. / Medios de comunicación
Para poder hacernos una idea de en cuántos campos distintos puede aplicarse el grafeno, es necesario echar un vistazo a nuestro alrededor y ver todo lo que nos rodea. Ordenadores, coches, teléfonos móviles y equipos de música son, por mencionar sólo algunos de ellos, cosas que encontramos frecuentemente en nuestra vida cotidiana en las que el grafeno se podría llegar a aplicar.

Por sus propiedades, el grafeno puede servir como material en la fabricación de aviones, satélites espaciales o automóviles, haciéndolos más seguros. También en la construcción de edificios, pues los convertiría en más resistentes. 
Estructura del Grafeno
Pero, sobre todo, destacan sus aplicaciones en el campo de la electrónica, donde a través de su capacidad para almacenar energía puede dotar a las baterías de una mayor duración y un menor tiempo de carga, establecer conexiones más rápidas e incluso contribuir a mejorar el medio ambiente sustituyendo a materiales contaminantes que hoy en día nos vemos obligados a utilizar.
No hay que olvidar su relevancia en el ámbito de la salud. Las prótesis de grafeno podrían sustituir a las actuales, de diversos materiales. O incluso se podría aplicar para mejorar el tratamiento de algunas enfermedades.
Por todo esto, no es de extrañar que se diga que su utilidad es prácticamente ilimitada y que las barreras a su aplicación únicamente son las de la imaginación humana.

Historia, características y aplicaciones del Grafeno




Otros vídeos sobre el material del futuro: El Grafeno

 

En este link podrán encontrar más información sobre el GRAFENO: http://grafeno.com/


By: L-CP


HISTORIA DEL COMPUTADOR


En 1670 el filósofo y matemático alemán Gottfried Wilhelm Leibniz perfeccionó la máquina de calcular de Pascal e inventó una que también podía multiplicar.
El inventor francés Joseph Marie Jacquard, al diseñar un telar automático, utilizó delgadas placas de madera perforadas para controlar el tejido utilizado en los diseños complejos. Durante la década de 1880 el estadístico estadounidense Herman Hollerith concibió la idea de utilizar tarjetas perforadas, similares a las placas de Jacquard, para procesar datos. Hollerith consiguió compilar la información estadística destinada al censo de población de 1890 de Estados Unidos mediante la utilización de un sistema que hacía pasar tarjetas perforadas sobre contactos eléctricos.

También en el siglo XIX el matemático e inventor británico Charles Babbage elaboró los principios de la computadora digital moderna. Inventó una serie de máquinas, como la máquina diferencial, diseñadas para solucionar problemas matemáticos complejos. Muchos historiadores consideran a Babbage y a su socia, la matemática británica Augusta Ada Byron (1815-1852), hija del poeta inglés Lord Byron, como a los verdaderos inventores de la computadora digital moderna. La tecnología de aquella época no era capaz de trasladar a la práctica sus acertados conceptos; pero una de sus invenciones, la máquina analítica, ya tenía muchas de las características de un ordenador moderno. Incluía una corriente, o flujo de entrada en forma de paquete de tarjetas perforadas, una memoria para guardar los datos, un procesador para las operaciones matemáticas y una impresora para hacer permanente el registro.

Los ordenadores analógicos comenzaron a construirse a principios del siglo XX. Los primeros modelos realizaban los cálculos mediante ejes y engranajes giratorios. Con estas máquinas se evaluaban las aproximaciones numéricas de ecuaciones demasiado difíciles como para poder ser resueltas mediante otros métodos. Durante las dos guerras mundiales se utilizaron sistemas informáticos analógicos, primero mecánicos y más tarde eléctricos, para predecir la trayectoria de los torpedos en los submarinos y para el manejo a distancia de las bombas en la aviación.

Durante la II Guerra Mundial (1939-1945), un equipo de científicos y matemáticos que trabajaban en Bletchley Park, al norte de Londres, crearon lo que se consideró el primer ordenador digital totalmente electrónico: el Colossus. Hacia diciembre de 1943 el Colossus, que incorporaba 1.500 válvulas o tubos de vacío, era ya operativo. Fue utilizado por el equipo dirigido por Alan Turing para descodificar los mensajes de radio cifrados de los alemanes. En 1939 y con independencia de este proyecto, John Atanasoff y Clifford Berry ya habían construido un prototipo de máquina electrónica en el Iowa State College (EEUU). Este prototipo y las investigaciones posteriores se realizaron en el anonimato, y más tarde quedaron eclipsadas por el desarrollo del Calculador e integrador numérico electrónico (en inglés ENIAC, Electronic Numerical Integrator and Computer) en 1946. El ENIAC, que según se demostró se basaba en gran medida en el ordenador Atanasoff-Berry (en inglés ABC, Atanasoff-Berry Computer), obtuvo una patente que caducó en 1973, varias décadas más tarde. 

El ENIAC contenía 18.000 válvulas de vacío y tenía una velocidad de varios cientos de multiplicaciones por minuto, pero su programa estaba conectado al procesador y debía ser modificado manualmente. Se construyó un sucesor del ENIAC con un almacenamiento de programa que estaba basado en los conceptos del matemático húngaro-estadounidenseJohn von Neumann. Las instrucciones se almacenaban dentro de una llamada memoria, lo que liberaba al ordenador de las limitaciones de velocidad del lector de cinta de papel durante la ejecución y permitía resolver problemas sin necesidad de volver a conectarse al ordenador. 

A finales de la década de 1950 el uso del transistor en los ordenadores marcó el advenimiento de elementos lógicos más pequeños, rápidos y versátiles de lo que permitían las máquinas con válvulas. Como los transistores utilizan mucha menos energía y tienen una vida útil más prolongada, a su desarrollo se debió el nacimiento de máquinas más perfeccionadas, que fueron llamadas ordenadores o computadoras de segunda generación. Los componentes se hicieron más pequeños, así como los espacios entre ellos, por lo que la fabricación del sistema resultaba más barata.

A finales de la década de 1960 apareció el circuito integrado (CI), que posibilitó la fabricación de varios transistores en un único sustrato de silicio en el que los cables de interconexión iban soldados. El circuito integrado permitió una posterior reducción del precio, el tamaño y los porcentajes de error. El microprocesador se convirtió en una realidad a mediados de la década de 1970, con la introducción del circuito de integración a gran escala(LSI, acrónimo de Large Scale Integrated) y, más tarde, con el circuito de integración a mayor escala (VLSI, acrónimo de Very Large Scale Integrated), con varios miles de transistores interconectados soldados sobre un único sustrato de silicio.
Documento cedido por: 
JORGE L. CASTILLO T.



BY: L-CP

x